Autoradiographic localization of inhibitory and excitatory amino acid neurotransmitter receptors in human normal and olivopontocerebellar atrophy cerebellar cortex.
نویسندگان
چکیده
We used standard techniques of receptor autoradiography to study the distribution of inhibitory and excitatory amino acid neurotransmitter receptors in human normal cerebellar cortex. Benzodiazepine (BDZ) receptor density was relatively high in both granule cell and molecular layers. GABAA receptor density was highest in granule cell layer with lower receptor density in molecular layer. There was a lower density of GABAB receptors than GABAA receptors in both molecular and granule cell layers with a relatively higher density of GABAB receptors in molecular layer than in granule cell layer. In granule cell layer, the density of the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors was greatest whereas in molecular layer the quisqualate (QA) receptor subtype density was greatest. With [3H]N-(1-[2-thienyl]cyclohexyl)3-4-piperidine as a ligand, there was no specific binding to the phencyclidine receptor. Molecular layer was also characterized by relatively high density of a non-NMDA/non-QA displaceable glutamate binding site. We studied also the cerebellar cortex of 4 cases of olivopontocerebellar atrophy (OPCA), a syndrome in which Purkinje and granule cells degenerate. In these specimens, there was significant decrement of BDZ and GABAA receptors in both molecular and granule cell layers, with loss of GABAB receptors in molecular layer. NMDA receptors were depleted in granule cell layer while QA receptors and the non-NMDA/non-QA glutamate binding site were significantly depleted in molecular layer. Our normal human and OPCA data are largely consistent with animal data about the cellular localization of cerebellar cortical amino acid neurotransmitter receptors.
منابع مشابه
Two types of quisqualate receptors are decreased in human olivopontocerebellar atrophy cerebellar cortex.
We used receptor autoradiography to study the distribution of ionotropic and metabotropic quisqualate (QA) receptors in normal human cerebellar cortex and cerebellar cortex from 7 cases of olivopontocerebellar atrophy (OPCA). In normal human cerebellar cortex, both types of QA receptors were densest in the molecular layer. Both ionotropic and metabotropic QA receptors were significantly diminis...
متن کاملExcitatory and inhibitory amino acid neurotransmitter binding sites in the cerebellar cortex of the pigeon (Columba livia).
We used receptor autoradiography to determine the distribution of excitatory and inhibitory amino acid neurotransmitter binding sites in the cerebellar cortex of the pigeon (Columba livia). alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and metabotropic binding sites had highest levels in the molecular layer. N-methyl-D-aspartate binding sites, assayed with both [3H]glutamate...
متن کاملترکیبات ارگانوفسفره و سیستم گابائرژیک مغز
Organophosphorus (OP) compounds are cholinesterase inhibitors widely used as pesticides in agriculture and nerve agents in battlefields. Exposure to these compounds leads to accumulation of acetylcholine at cholinergic synapses and overstimulation of muscarinic and nicotinic receptors by inhibiting the enzyme acetylcholinesterase. Seizure activity is one of the major manifestations of OP poison...
متن کاملDementia of the Alzheimer's type: changes in hippocampal L-[3H]glutamate binding.
Glutamate or a related excitatory amino acid is thought to be the major excitatory neurotransmitter of hippocampal afferents, intrinsic neurons, and efferents. We have used an autoradiographic technique to investigate the status of excitatory amino acid receptors in the hippocampal formation of patients dying with dementia of the Alzheimer type (DAT). We examined L-[3H]glutamate binding to sect...
متن کاملSomatodendritic release of glutamate regulates synaptic inhibition in cerebellar Purkinje cells via autocrine mGluR1 activation.
In the cerebellum, the process of retrograde signaling via presynaptic receptors is important for the induction of short- and long-term changes in inhibitory synaptic transmission at interneuron-Purkinje cell (PC) synapses. Endocannabinoids, by activating presynaptic CB1 receptors, mediate a short-term decrease in inhibitory synaptic efficacy, whereas glutamate, acting on presynaptic NMDA recep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 522 1 شماره
صفحات -
تاریخ انتشار 1990